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SUMMARY

An error indicator and a locally implicit scheme with anisotropic dissipation model on dynamic quadri-
lateral–triangular mesh are developed to study transonic �ows over vibrating blades with interblade
phase angles. In the Cartesian co-ordinate system, the unsteady Euler equations with moving domain
e�ects are solved. The error indicator, in which uni�ed magnitudes of dynamic grid speed, substantial
derivative of pressure, and substantial derivative of vorticity magnitude are incorporated to capture the
unsteady wave behaviours and vortex-shedding phenomena due to unsteadiness. To assess the accuracy
of the locally implicit scheme with anisotropic dissipation model on quadrilateral–triangular mesh, two
�ow calculations are performed. Based on the comparison with the related numerical and experimen-
tal data, the accuracy of the present approach is con�rmed. According to the high-resolutional result
on the adaptive mesh, the unsteady pressure wave, shock and vortex-shedding behaviours are clearly
demonstrated. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady aerodynamic behaviour has attracted increasing interest in the development of new
turbomachinery. For solving oscillating cascade �ows, the linearized models, such as the lin-
earized potential [1] and Euler [2] solvers have been used. Although linearized methods meet
the need for e�cient unsteady aerodynamic response predictions, their validity is limited by
the linear assumption. As mentioned by Wol� and Fleeter [3], non-linear e�ects were quite
likely to be associated with larger amplitudes of blade oscillation as well as unsteady transonic
�ows with shock motion induced by oscillating blades at small amplitudes. In recent years, a
number of Euler [3–9] and Navier–Stokes [8–12] solvers have been presented to simulate the
blade vibration problems. To save computing e�ort, He [4] developed a zonal moving grid
technique in which only subregions near oscillating blades were moved. Hu� [5] proposed
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a deforming grid treatment to create C-grids, where the multiple blade computational mesh
was accomplished by stacking C-grids for each blade. To con�ne the computational domain
within single-blade passage for arbitrary interblade phase angle values, Wol� and Fleeter [3]
applied the Fourier series lagged boundary condition treatment on an expanded grid along the
periodic boundary. Actually, the periodic boundary became part of the interior solution. On
a quadrilateral–triangular mesh, Hwang and Yang [6] presented a rigid-deformable dynamic
mesh algorithm to investigate transonic �ows around an oscillating cascade of four blades.
A three-dimensional Euler Solver [7] for vibrating cascade aerodynamics, in which a space-
centred �nite volume scheme and a �ve-stage Runga–Kutta integration procedure were used,
had been validated by comparison with available theoretical and semi-analytical results. The
time-accurate Euler=Navier–Stokes analysis [8] using NPHASE code [9] was applied, and com-
puted results were compared with those based on linearized LINFLO code [13]. To solve the
three-dimensional thin-layer Navier–Stokes equations in a simpli�ed form, a time-consistent
two-grid time marching technique [10] is adopted to relax the time-step limitation of explicit
Runge–Kutta scheme. On a multi-passage computational mesh [11], the explicit four-stage
Runge–Kutta scheme and the Baldwin–Lomax mixing length turbulence model were adopted.
The calculation showed that there was a more apparent mesh dependence of the results in
the regions of �ow separation. A coupled viscous=inviscid code [12] in which the thin-layer
Navier–Stokes equations were solved on an inner O-grid around each blade, while the Euler
equations were solved on the outer unstructured mesh. Before the beginning of unsteady cal-
culation, the outer triangular mesh was adapted according to the steady-state solution. This
steady adapted mesh was used throughout the entire unsteady calculation. On a composite
grid where a deforming C-grid was embedded in an H-grid, a coupled inviscid=viscous model
[14] was implemented to incorporate the inverse integral boundary layer solution and the
time-marching NPHASE analysis. It was indicated [15] that oscillating magnitude and steady
loading had a signi�cant e�ect on both the in�uence coe�cient data and the equivalent all-
airfoils-oscillating data.
As mentioned by Sheng et al. [16] the biggest advantage of the unstructured grid approach

over the structured grid approach was that the process of grid generation for complex geome-
tries was greatly simpli�ed. Also mentioned by Mavriplis [17], unstructured grid techniques
o�ered the potential for greatly reducing the grid generation time associated with complex
geometries. Furthermore, unstructured mesh approaches enabled the use of adaptive meshing
techniques, which held great promise for increasing solution accuracy at minimal additional
computational cost. Recently, considerable e�ort has been made to develop solution-adaptive
techniques [18–25] for solving the Euler=Navier–Stokes equations on unstructured meshes.
The mesh-enrichment and mesh-coarsening procedures [18] were implemented within an un-
structured grid upwind-type Euler code, and the absolute value of the substantial derivative
of density was used as an enrichment indicator. By using the two-step Runge–Kutta Galerkin
�nite-element method and a local remeshing technique [19], a shock propagation within a
channel was investigated. From the time-varying meshes, directionally stretched elements were
demonstrated. Webster et al. [20] developed an adaptive �nite-element methodology, in which
the �nite quadtree mesh generator, interpolation-based error indicator and edge-based mesh
enrichment procedure were employed. On a fully unstructured mesh of tetrahedral elements, a
solution adaptive multigrid scheme [21] was developed to study the transonic �ows about an
aircraft engine nacelle. A general adaptation procedure [22] based on h-re�nement and coars-
ening was developed to improve the resolution of complex �ow features. By discretizing the
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�ow domain with both prismatic and tetrahedral elements, a hybrid grid adaptive algorithm
[23] that combined grid re�nement and redistribution was presented. A grid re�nement tech-
nique [24], which was based on a combination of surface mesh subdivision and local remesh-
ing of the volume grid, was developed and successfully applied to several three-dimensional
�ow test cases. Walsh and Zingg [25] presented a solution-dependent retriangulation algo-
rithm which locally restructured the grid to recover an anisotropic grid following adaptation.
An adaptive re�nement strategy [26] based on hierarchical subdivision was formulated and
implemented for meshes containing arbitrary mixtures of tetrahedral, hexahedra, prisms, and
pyramids. Yang [27] presented an error indicator in which the uni�ed magnitude of pressure
gradient and uni�ed magnitude of gradient of vorticity magnitude were incorporated to study
the supersonic �ow over a backward-facing step.
There are three objectives in the present study: (1) To develop an error indicator for

dynamic �ows dominated by unsteady pressure wave, shock and vortex; (2) To develop the
locally implicit scheme with anisotropic dissipation model on dynamic quadrilateral–triangular
mesh; and (3) To investigate transonic �ows over vibrating blades with interblade phase
angles.

2. GOVERNING EQUATIONS

The two-dimensional Euler equations with moving domain e�ects in the Cartesian co-ordinate
system can be written as

@U
@t
+∇ · F=0 (1)

where F=Ei+Gj

U =




�
�u
�v
e


 ; E=




�(u− xt)
�u(u− xt) + p

�(u− xt)v
e(u− xt) + pu


 ; G=




�(v− yt)
�u(v− yt)

�v(v− yt) + p
e(v− yt) + pv




Variables �; u; v and e represent the gas density, velocity component in x; y directions
and total energy per unit volume, respectively. xt and yt are the grid speeds in the x and y
directions, respectively. Pressure P is given by the equation of state, and � is the ratio of
speci�c heat.

P=(�− 1)
[
e − �

2
(u2 + v2)

]
(2)

By integrating Equation (1) over space and using Gauss’s theorem, the following expression
is obtained:

@
@t

∫ ∫
�
U dA+

∫
@�
F · dl=0 (3)

where dl= n d‘, and n is the unit normal vector in the outward direction. � is the moving
domain of interest and @� is the boundary of domain. A fully implicit �nite-volume discretiza-
tion scheme is applied to Equation (3) over the entire �ow�eld. Flow variables at cell faces
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are obtained from the averages of �ow variables at the cell centres. Those values and arti�cial
dissipation terms are introduced for line integral and numerical stability. By implementing a
two-parameter family (�; �) on the dynamic quadrilateral–triangular mesh, Equation (3) can
be written as

(
An+1�Un

�t

)
i
+

�
1 + �

Qi(Un+1)− �
1 + �

Di(Un+1)

=− 1− �
1 + �

Qi(Un) +
1− �
1 + �

Di(Un) +
�

1 + �

(
An�Un−1

�t

)
i
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(
Un�An

�t

)
i
+

�
1 + �

(
Un−1�An−1

�t
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i

(4)

where

�Un =Un+1 −Un

�An = An+1 − An

Qi(U ) =
Ni∑
k=1
(F · dl)ik

Ni =

{
3 for triangular cell i
4 for quadrilateral cell i

Ai; n, and Di represent the cell area, marching time step and arti�cial dissipation operator,
respectively. In this paper, �=1 and �=0 are selected for steady �ow calculations and the
scheme becomes �rst-order accurate in time, whereas �=1 and �= 1

2 are adopted for unsteady
�ow calculations and the scheme becomes second-order accurate in time. The fourth and �fth
terms on the right-hand side of Equation (4) account for the e�ects of area variation when
meshes deform during time evolution. Under rigid-body motions or mesh-�xed situations,
these two terms will vanish.
On the structured grid system, Jameson et al. [28] developed an e�ective form for Di.

The isotropic value for scaling the dissipation has been extended to unstructured triangular
meshes by Mavriplis [29]. On the static triangular mesh, Hwang and Liu [30] developed the
anisotropic dissipation model. In this article, the anisotropic dissipation model will be extended
to the dynamic quadrilateral–triangular mesh. The mathematical form is described as follows:

Di(U )=
Ni∑
k=1

dik (5)

where

dik = �(2)ik (Uk −Ui)− �(4)ik (∇2Uk −∇2Ui)

�(2)ik = k(2) ik ��ik
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�(4)ik = k(4) ik max[0; (1− 32 ��ik)]
 ik = (|(V −Vg) · dl|+ a|dl|)ik

�ik =
|∇2pi|∑Ni

k=1 (pi + pk)

��ik =

{
max(�i; �k ; �k1 ; �k2 ; �k3); Nk =3
max(�i; �k ; �k1 ; �k2 ; �k3 ; �k4); Nk =4

∇2Ui =
Ni∑
k=1

Uk − NiUi

V= ui + vj

Vg = xti+ ytj

Subscripts k1; k2 and k3 represent the indices of three adjacent cells which surround the
triangular cell k, whereas subscripts k1; k2; k3 and k4 represent the indices of four adjacent
cells which surround the quadrilateral cell k. ∇2Ui is expressed as undivided Laplacian oper-
ator.  ik is the spectral radius of Jacobian matrix (@F=@U · dl) on the interface between cell i
and cell k. Two constants k(2) and k(4) are taken as 1

4 and
1
64 , respectively.

By using a Taylor series expansion for temporal di�erences, Equation (4) is linearized and
can be constructed in the delta form as follows:
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The last term on the right-hand side of Equation (6) arises from the dynamic mesh e�ects
during linearization. To solve Equation (6), a locally implicit scheme [31, 32] is implemented.
This scheme is locally implicit, but globally explicit and is unconditionally stable under local
linearized analysis [32]. It does not require the assembly of any global matrices and does
not need any matrix system solvers. The locally implicit scheme is originally developed by
Reddy and Jacock [31] on structured quadrilaterals. Hwang and Liu [30] developed the locally
implicit scheme and anisotropic dissipation model on the static triangular mesh. In this paper,
the locally implicit scheme and anisotropic dissipation model is extended to the dynamic
quadrilateral–triangular mesh.
For each cell i, the equation for iterative corrections is written as

CdUi = Re sni − Li(�U ) (7)

�U (m+1)
i =�U (m)

i +Win dUi; m=1; 2 (8)

where C is a diagonal matrix de�ned as a modi�cation to the coe�cient CI

C=
(
An+1

�t

)
i

[
1:0 +

�
2(1 + �)

CFL
]
I +

[
�

1 + �

(
Ni∑
k=1

�(2)ik + Ni

Ni∑
k=1

�(4)ik

)]
I (9)

where CFL is the Courant–Friedrichs–Lewy number. �U shown on the right-hand side of
Equation (7) takes the latest available values from Equation (8). The inner iteration for
�U (m+1) can be computed rapidly since the dU corrections are explicit scalar equations. One
symmetric cycle of inner iterations is employed in each time step for steady �ow calculations,
whereas several cycles are performed until a convergence state of �U (m+1)

i is reached for
unsteady �ow calculations. At the end of a time step, the outer relaxation is introduced.

Un+1
i =Un

i +Wout�Ui (10)

The coe�cients Win and Wout in Equations (8) and (10) are inner and outer relaxation
parameters, respectively, of order 1.2 for steady �ow calculations, whereas Wout is set to be
1.0 for unsteady �ow calculations.

3. ADAPTIVE-MESH ALGORITHM

The present adaptive algorithm includes the error indicator and two-level re�nement technique.
As for the selection of error indicator, Rausch et al. [18] adopted the absolute value of
substantial derivative of density |D�=Dt| as the error indicator to simulate unsteady inviscid
�ow problems. In the author’s previous study [27], an error indicator, which incorporated the
uni�ed magnitude of pressure gradient (|∇p|) and uni�ed magnitude of gradient of vorticity
magnitude (|∇!|, vorticity magnitude != |∇×V|), was proposed and formulated as

EI=
|∇P|

|∇P|max + �
|∇!|

|∇!|max (11)

Based on the comparison of the adaptive meshes [27] obtained using Equation (11) and
the other three di�erent error indicators which were absolute values of density gradient |∇�|,
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Mach number gradient |∇M | and gradient of vorticity magnitude |∇!|, the error indicator
in Equation (11) could incorporate the advantages and avoid the disadvantages of the other
three error indicators for �ows dominated by pressure wave and vortex.
In the present study, the error indicator in Equation (11) is further improved to account for

the unsteadiness and dynamic grid e�ect. The present error indicator is formulated as

EI=
|DP=Dt|

|Dp=Dt|max + �1
|D!=Dt|

|D!=Dt|max + �2
|Vg|

|Vg|max (12)

where |Dp=Dt|; |D!=Dt| and |Vg| are the absolute values of the substantial derivative of pres-
sure, substantial derivative of vorticity magnitude, and velocity vector of dynamic grid, respec-
tively. |Dp=Dt|max; |D!=Dt|max and |Vg|max are the maximum values of |Dp=Dt|; |D!=Dt| and
|Vg| among all the computational cells, respectively. Since the order of magnitude of |D!=Dt|
outnumbers those of |Dp=Dt| and |Vg|, it is essential to adjust all at the same order. Hence,
|Dp=Dt|; |D!=Dt| and |Vg| are divided by |Dp=Dt|max; |D!=Dt|max and |Vg|max, respectively.
�1 and �2 represents the weighted coe�cients. For the calculations of transonic �ows over
vibrating blades, �1 and �2 and are set to be 2.0 and 1.0, respectively.
As for the two-level re�nement technique, the mesh enrichment is operated on the back-

ground grid (initial grid) instead of the last adapted mesh. Therefore, the number of cells will
not increase unlimitedly during adaptations. At �rst, the value of EI of each unre�ned cell is
�rstly calculated. The product of a speci�ed constant C1 and the average value of EI over
the initial grid is selected as the �rst threshold value. If the value of EI of each unre�ned
cell is larger than the �rst threshold value C1 ∗ EIave, the new node will be placed at the
mid-point of each edge of quadrilateral=triangular cell or the centre of quadrilateral cell [33].
After �nishing the �rst-level re�nement, the properties at all added new cells are interpolated
from those at the initial grid. Continuing the second-level mesh re�nement, the value of EI for
each cell on the intermediate mesh and the corresponding second threshold value C2 ∗ EIave
are computed. It is not necessary to perform any Euler iteration between level 1 and level
2 re�nements. Normally, the value of constant C2 is about three times bigger than that of
constant C1, and the value of constant C1 is ranged from 0.4 to 0.8. In the present calculation,
C1 and C2 are chosen as 0.6 and 1.8, respectively. Then the intermediate mesh is re�ned by
reprocessing the �rst-level re�nement technique. Since Webster et al. [20] mentioned that
the mesh coarsening accounted for the majority of CPU cost during adaptation, the mesh
coarsening procedure is not processed in this article.

4. BOUNDARY CONDITIONS

For the steady �ow calculations, no-penetration and adiabatic wall conditions are imposed at
the body or wall surface. Pressure is obtained by the following condition:

�(y�u− x�v)(y�u� − x�v�)= (x2� + y2�)P� − (x�x� + y�y�)P� (13)

where � and � represent the body-�tted co-ordinate lines. Density is obtained from the equation
of state. As for the far �eld of transonic �ow around an NACA 0012 airfoil, one-dimensional
characteristic analysis based on Riemann invariants is used to determine the values of �ow
variables on the outer boundary of the computational domain.
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For the unsteady calculations of transonic �ows over vibrating blades with interblade phase
angles, no penetration condition with respect to the moving blade is imposed on the vibrating
blade surfaces. Pressure, density and velocity components parallel to the moving surface are
obtained by extrapolation from the values at interior cells. On the upper and lower periodic
boundaries, the same number of cells and nodes are generated during adaptation. The nodes
on both of the upper and lower boundaries are located at the same position along the X -axis,
but with a �xed distance in the Y -axis, which is equal to the height of computational domain.
Therefore, both the corresponding cells at upper and lower periodical boundaries are assigned
to the neighbours of each other, and they are treated as interior cells. The dynamic mesh
algorithm [34] is applied in this paper. Based on the Gauss–Seidel method, the displacement
of each interior node is obtained by solving the static equilibrium equations. At the inlet and
outlet boundaries, two-dimensional unsteady non-re�ecting boundary condition, which was
developed by Giles [35], is utilized.
In addition to the mass, momentum and energy conservation laws that govern the physics

of the �ow, the geometric conservation [36, 37] is stated as follows:

@
@t

∫ ∫
�
dA=

∫
@�
Vg · dl (14)

after discretization, Equation (14) can be written as

	Aj

�t
=(Vg · dl)j (15)

and

An+1
i − An

i =
Ni∑
j=1

	Aj (16)

where An+1
i and An

i denote the cell areas at new and old time levels, respectively. 	Aj represents
the area change due to the movement of the jth cell edge during time interval �t, and Ni is set
to be 3 or 4 for triangular or quadrilateral cell i, respectively. In the present dynamic solver,
the new mesh positions are obtained from the dynamic mesh algorithm [34], and the area 	Aj

is determined from new and old mesh positions. The �ux due to grid speed across jth cell
boundary (Vg · dl)j, which has appeared in Equation (3), is determined from Equation (15).
It is noted that (Vg · dl)j has been averaged with respect to time and (Vg)j is not necessary
to be calculated.

5. RESULTS AND DISCUSSION

On quadrilateral–triangular meshes, the capability of the locally implicit scheme with
anisotropic dissipation model developed in this paper is evaluated by performing two steady
�ow calculations, which include the oblique shock re�ection at a wall and transonic �ow
around an NACA 0012 airfoil. To further demonstrate the versatility of the present error indi-
cator, the transonic �ows over vibrating blades with interblade phase angles are investigated.
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Figure 1. Initial mesh of oblique shock re�ection at a wall (576 cells).

Figure 2. Adaptive mesh of oblique shock re�ection at a wall (3016 cells).

5.1. Oblique shock re�ection at a wall

In this �ow problem, the freestream Mach number and incident shock angle are equal to
2.9 and 29◦, respectively. The initial mesh shown in Figure 1 is the structured quadrilateral
grid, which is treated in an unstructured manner. After obtaining the steady-state solution on
the initial mesh, the adaptive quadrilateral–triangular mesh shown in Figure 2 is achieved
according to the steady solution, where both �1 and �2 in Equation (12) are set to be 0.0.
On the adaptive quadrilateral–triangular mesh, the incident and re�ective shocks are clearly
resolved. Pressure distributions on the wall including the exact solution, steady solutions on
both initial and adaptive meshes are plotted in Figure 3. From Figure 3, the high-resolutional
result that is obtained on the adaptive mesh compares well with the exact solution. In this
article, steady-state solutions are assumed to be achieved when the L2-norm of density is less
than or equal to 10−6.

5.2. Transonic �ow around an NACA 0012 airfoil

To further evaluate the locally implicit scheme with anisotropic dissipation model on mixed
mesh, transonic �ow (M∞=0:8) around an NACA 0012 airfoil with angle of attack (
=1:25◦)
is investigated. The computational domain is taken to be 21C × 20C, where C is the chord
length. The initial quadrilateral–triangular mesh system (see Figure 4) contains 4688 cells and
3285 nodes, and there are 110 points that lie on the airfoil surface. Again, the adaptive mesh
shown in Figure 5 is achieved according to the steady solution on initial mesh, where both
�1 and �2 in Equation (12) are set to be 0.0. Pressure coe�cient distributions on the airfoil
surface are depicted in Figure 6. As shown in Figure 6, the calculated pressure coe�cient
distributions on both initial and adaptive meshes compare well with the numerical result of
Hwang and Yang [34] in which the locally implicit total variation diminishing scheme was
used. It is apparent that accurate and high-resolutional result is obtained on the adaptive mesh.
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Figure 3. Pressure distributions along the wall for oblique shock re�ection at a wall.

Figure 4. Initial mesh of transonic �ow around an NACA 0012 airfoil (4688 cells).

5.3. Transonic �ows over vibrating blades with interblade phase angles

In the present calculations of �ows over vibrating blades with interblade phase angles, the
inlet Mach number and exit pressure ratio (static exit pressure divided by total pressure) are
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Figure 5. Adaptive mesh of transonic �ow around an NACA 0012 airfoil (7150 cells).
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Figure 6. Pressure coe�cient distributions for transonic �ow around an NACA 0012 airfoil.
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Figure 7. Initial quadrilateral–triangular mesh (13 830 cells) for the transonic �ow over vibrating blades.

set to be 0.8 and 0.7322, respectively. The computational domain contains four uncambered
biconvex blades, where the values of thickness-to-chord ratio, solidity (chord length divided by
blade pitch), and stagger angle are 0.076, 1.3, and 53◦, respectively. The motion of these four
vibrating blades, which is executing torsional mode oscillations about mid-chord, is governed
by the following relation:


= 
0 + 
I sin(2Mk�+m�) (17)

where 
; 
0; 
I; M; k; � and � represent instantaneous angle of attack, mean �ow angle of
attack, oscillation amplitude, inlet Mach number, reduced frequency, non-dimensionalized time
scale and interblade phase angle, respectively. The blade number m=0; 1; 2 and 3 represent
each blade from the lowest to the highest one, respectively. On the initial quadrilateral–
triangular mesh (Figure 7), a layer of O-typed quadrilaterals is generated around each blade
surface to match the experimental geometry [38], where the leading and trailing edges are
rounded with a small radius of curvature (0.33% of chord length). After creating the quadri-
laterals, the unstructured triangles are distributed elsewhere according to the mesh generation
technique [19]. This quadrilateral–triangular mesh contains 13 830 cells and 9619 nodes, where
a layer of O-typed grids with 118× 10 quadrilaterals is generated around each blade.
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Figure 8. Time history of lift coe�cient for the transonic �ow over vibrating blades
(M =0:8, �=−90◦, k =0:462; 
0 = 7◦ and 
I = 4:8◦).

Considering the �rst cycle of blade motion for � equal to −90◦, only the lowest blade
(m=0) is set to motion at the beginning, whereas the second (m=1), the third (m=2)
and the highest (m=3) blades are set to motion when 2Mk� reaches =2;  and 3=2, re-
spectively. As for � replaced by 90◦, the lowest blade (m=0) is still set to motion at the
beginning of the �rst cycle of motion, whereas the highest (m=3), the third (m=2), and the
second (m=1) blades are set to motion when 2Mk� reaches =2;  and 3=2, respectively.
Once the blade is set to motion, it will continue its motion until the end of computation.
For the transonic �ow over vibrating blades with �; k; 
0 and 
I equal to −90◦; 0:462; 7◦
and 4:8◦, respectively, a constant marching time step of ��=0:00236 is chosen. The peri-
odic solution is achieved by processing six cycles of motion, and it takes 3600 time steps
to accomplish one cycle of motion. In this computation, C1 and C2 are set to be 0.6 and
1.8, respectively, and adaptation is performed every 30 time steps. From the time history of
lift coe�cient shown in Figure 8, the periodic characteristic is quickly achieved. The con-
vergence of the present numerical approach on transient, adaptive problems is demonstrated.
When one value of 
I (1:2◦) and two values of � (−90◦ and 90◦) are chosen, magnitude dis-
tributions of the �rst harmonic dynamic surface pressure di�erence coe�cient �Cp are plotted
in Figure 9. To assess the present adaptive solver, the experimental data [38] and related Eu-
ler solutions obtained on the non-adaptive quadrilateral–triangular mesh [6] are adopted for
comparison. By choosing the experimental data as the reference values, the distributions of
magnitude in Figure 9 indicate that the present adaptive solver provides better results than
does the related non-adaptive approach, and the present adaptive solutions compare very well
with the experimental data. Consequently, the accuracy of the present adaptive approach is
con�rmed.
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Figure 9. Magnitude distributions of the �rst harmonic dynamic surface pressure di�erence coe�cient
�Cp for the transonic �ow over vibrating blades (M =0:8; k =0:462; 
0 = 7◦ and 
I = 1:2◦).

As for the case with �; k; 
0 and 
I equal to 90◦; 0:462; 7◦ and 4:8◦, respectively,
the instantaneous meshes, pressure contours and vorticity contours during the sixth cycle
((2MK�–10)=0; =6; =3 and =2) are plotted in Figures 10–12. After comparing the
instantaneous meshes (Figures 10(a) and 10(d)), pressure contours (Figures 11(a) and 11(d))
and vorticity contours (Figures 12(a) and 12(d)), it is observed that the �ow behaviours repeat
and proceed one pitch distance in the downward direction for quarter time period. From the
results given in Figures 10(a) and 11(a), shocks appear on the front part of upper surface of
the second blade, and on the mid-chord of upper surface of the third blade. Meanwhile, two
compression waves on the upper leading edge of the lowest blade and on the rear part of
the lower surface of the highest blade are observed. Within the passage between the lowest
and highest blades, a strong shock is depicted, whose strength is strong enough to choke the
�ow�eld. Considering the vorticity contour shown in Figure 12(a), zones of stronger vorticity
gradient shed from the trailing edges of the second and highest blades, whereas zones of
minor vorticity gradient shed from the trailing edges of the lowest and third blades. On the
upper surfaces of the second and third blades and on the rear part of upper surface of the
highest blade, zones of stronger vorticity gradient come into view, whereas zones of minor
vorticity gradient on the lower surfaces of the lowest and highest blades are also demonstrated.
A vortex located between the downstream of the lowest and second blades, which originally
sheds from the trailing edge of the lowest blade, is also observed. Furthermore, there are
corresponding zones of strong vorticity gradient, whose locations are the same as those of
unsteady shocks in Figure 11(a).
To further investigate the unsteady �ow�eld during each quarter time period, Figures 10(a)–

10(d), 11(a)–11(d) and 12(a)–12(d) are studied. During time evolution, a compression wave
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Figure 10. Instantaneous meshes for the transonic �ow over vibrating
blades (M =0:8; �=90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10)

equal to (a) 0, (b) =6, (c) =3 and (d) =2.
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Figure 11. Instantaneous pressure contours for the transonic �ow over vibrating
blades (M =0:8; �=90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10) equal

to (a) 0, (b) =6, (c) =3 and (d) =2.
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Figure 12. Instantaneous vorticity contours for the transonic �ow over vibrating
blades (M =0:8; �=90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10) equal

to (a) 0, (b) =6, (c) =3 and (d) =2.
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on the upper leading edge of the lowest blade (Figures 10(a) and 11(a)) moves upstream. At
the same time, a shock on the front part of lower surface of the lowest blade (Figures 10(a)
and 11(a)) moves forward and becomes a strong compression wave. This strong compression
wave passes through the leading edge and combines with the upper compression wave
(Figures 10(b) and 11(b)). Then this compression wave continues to go upstream (Figures
10(c) and 11(c)) and decreases its strength (Figures 10(d) and 11(d)). A shock on the front
part of upper surface of the second blade (Figures 10(a) and 11(a)) moves downstream
and becomes stronger (Figures 10(b)–10(d) and 11(b)–11(d)). Meanwhile, a weaker leading
edge shock on the lower surface of the highest blade (Figures 10(a) and 11(a)) grows to be
stronger and moves downstream (Figures 10(b) and 11(b)). After interaction with the shock
standing near the mid-chord of upper surface of the third blade (Figures 10(c) and 11(c)),
a stronger shock is formed (Figures 10(d) and 11(d)). At this moment, the �ow within the
passage between the highest and third blades is choked by this shock.
Comparing Figures 10(a)–10(d) and 12(a)–12(d), a vortex appears between the down-

stream of the lowest and second blades (Figures 10(a) and 12(a)), and it originally sheds
from the trailing edge of the lowest blade. This vortex convects rearward and interacts with
the zone of strong vorticity gradient shedding from the trailing edge of the second blade, and
eventually goes out of the computational domain (Figures 10(b)–10(d)). Meanwhile, a zone
of strong vorticity gradient located on the rear part of upper surface of the highest blade
(Figures 10(a) and 12(a)) moves rearward (Figures 10(b) and 12(b)), and it becomes a
vortex shedding from the trailing edge of the highest blade (Figures 10(c) and 12(c)). This
shedding vortex convects further downstream (Figures 10(d) and 12(d)). The vortex originally
shedding from the trailing edge of the highest blade (Figures 10(d) and 12(d)) is the same as
that originally shedding from the trailing edge of the lowest blade (Figures 10(a) and 12(a)).
Within the passage between the third and highest blades, the unsteady structure of vorticity
contours (Figures 12(a)–12(d)) is similar to that of pressure contours (Figures 11(a)–11(d)).
During this quarter time period, a zone of high vorticity gradient on the trailing edge of
the lowest blade convects and stretches further downstream. From the above discussion and
Figure 10, it is obvious that the present adaptive meshes clearly capture the unsteady wave
behaviours and vortex-shedding phenomena.
In order to study the e�ect of the interblade phase angle upon transonic �ows over vibrating

blades, � is replaced by −90◦ while k; 
0 and 
I are set to be 0:462; 7◦ and 4:8◦ respectively.
The instantaneous meshes, pressure contours and vorticity contours during the sixth cycle
((2MK�–10)=0; =6; =3 and =2) are plotted in Figures 13–15. After comparing the
instantaneous meshes (Figures 13(a) and 13(d)), pressure contours (Figures 14(a) and 14(d))
and vorticity contours (Figures 15(a) and 15(d)), it is observed that the �ow behaviours
repeat and proceed one pitch distance in the upward direction for quarter time period. From
the sequence of results given in Figures 13(a)–13(d) and Figures 14(a)–14(d), a shock on
the lower surface of the lowest blade (Figures 13(a) and 14(a)) keeps moving close to the
leading edge (Figures 13(b) and 14(b)) and eventually passes through the leading edge to
form a weak shock on the upper surface of the lowest blade (Figures 13(d) and 14(d)).
Initially, there is no shock between the lowest and the second blades in Figures 13(a) and
14(a). A shock on the upper surface of the second blade (Figures 13(a) and 14(a)) moves
close to the leading edge, and then goes around the leading edge (Figures 13(b) and 14(b))
to interact with the pressure wave. Eventually, two shocks on the lower surface of the second
blade and on the mid-chord of the upper surface of the lowest blade (Figures 13(d) and 14(d))
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Figure 13. Instantaneous meshes for the transonic �ow over vibrating blades
(M =0:8; �=−90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10) equal

to (a) 0, (b) =6, (c) =3 and (d) =2.
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Figure 14. Instantaneous pressure contours for the transonic �ow over vibrating
blades (M =0:8; �=−90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10) equal

to (a) 0, (b) =6, (c) =3 and (d) =2.
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Figure 15. Instantaneous vorticity contours for the transonic �ow over vibrating
blades (M =0:8; �=−90◦; k =0:462; 
0 = 7◦ and 
I = 4:8◦). (2MK�–10) equal

to (a) 0, (b) =6, (c) =3 and (d) =2.
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are formed. As shown in Figures 13(a) and 14(a), there are one shock and one compression
wave on the upper surface of the third blade. The latter compression wave moves close to the
former shock, and eventually combines together to form a stronger shock on the upper surface
of the third blade (Figures 13(c) and 14(c)). This stronger shock keeps moving upstream to
be close to the leading edge (Figures 13(d) and 14(d)). On the upper surface of the highest
blade in Figures 13(a) and 14(a), there exist a weak leading edge shock, a shock on the mid-
chord and a rear compression wave. During time evolution, this weak leading edge shock
goes downstream (Figure 13(b) and 14(b)) and combines with the mid-chord shock, which
is moving upstream. Then a strong shock is formed on the upper surface of the highest blade
(Figures 13(d) and 14(d)). Meanwhile, the rear compression wave merges to be stronger
(Figures 13(b) and 14(b)), and it keeps moving upstream (Figures 13(d) and 14(d)).
Considering the vorticity contour depicted in Figure 15(a), a zone of vorticity gradient sheds

from the trailing edge of each blade. On the upper surfaces of the second, third and highest
blades, zones of vorticity gradient come into view. Moreover, zones of vorticity gradient
appear on the lower surfaces of the lowest and highest blades. As shown in Figure 15(a),
there are corresponding zones of vorticity gradient whose locations are similar to those of
unsteady shocks in Figure 14(a).
As far as the sequence of vorticity contours in Figures 15(a)–15(d) is concerned, a zone

of vorticity gradient on the lower surface of the lowest blade convects downstream and sheds
from the trailing edge. Meanwhile, a zone of vorticity gradient gradually develops on the upper
surface of the lowest blade. On the upper surface of the second blade, a zone of vorticity
gradient moves rearward and sheds from the trailing edge, whereas a zone of vorticity gradient
comes into view on the lower surface of second blade. As shown in Figure 15(a), a strong
vorticity gradient standing on the fore portion of upper surface of the second blade moves
forward and passes through the leading edge of the second blade (Figure 15(b)). It continues
to move forward and decay it is strength (Figures 15(c) and 15(d)). The structure of strong
vorticity gradient standing on the fore part of upper surface of the third blade (Figure 15(a)) is
similar to that of the corresponding shock and compression wave in Figure 14(a). During time
evolution, the migration of strong vorticity gradient (Figures 15(b)–15(d)) looks much like
that of the corresponding shock and compression wave (Figures 14(b)–14(d)). On the upper
surface of the highest blade, a zone of vorticity gradient becomes stronger (Figures 15(a)–
15(d)), whereas a zone of vorticity gradient on the lower surface of the highest blade becomes
weaker. The migration of vorticity gradient standing on the front part of upper surface of the
highest blade in Figures 15(a)–15(d) is similar to that of the corresponding shock behavior
in Figures 14(a)–14(d).

6. CONCLUSIONS

The main contribution of this paper is to develop an error indicator and a locally implicit
scheme with anisotropic dissipation model on dynamic quadrilateral–triangular mesh. In the
Cartesian co-ordinate system, the unsteady Euler equations with moving domain e�ects are
solved to investigate the transonic �ows over vibrating blades with interblade phase angles.
After performing two �ow calculations, which include the oblique shock re�ection at a wall
and transonic �ow around an NACA 0012 airfoil, the accuracy of the locally implicit scheme
with anisotropic dissipation model is con�rmed. As demonstrated in the instantaneous pressure
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and vorticity contours, the �ow behaviours repeat and proceed one pitch distance in the
downward or upward direction for interblade phase angle equal to 90◦ or −90◦, respectively.
From the comparison and discussion of instantaneous meshes with pressure and vorticity
contours, it is evident that the present adaptive meshes clearly capture the unsteady wave
behaviours and vortex-shedding phenomena.
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